### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Methyl 2-{[(*E*)-8-oxo-5,8-dihydroquinolin-5-ylidene]hydrazino}benzoate

# Tushar S. Basu Baul,<sup>a</sup>‡ Archana Mizar<sup>a</sup> and Edward R. T. Tiekink<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India, and <sup>b</sup>Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA Correspondence e-mail: edward.tiekink@utsa.edu

Received 27 September 2007; accepted 29 September 2007

Key indicators: single-crystal X-ray study; T = 98 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.062; wR factor = 0.132; data-to-parameter ratio = 11.1.

The non-H atoms in the title compound,  $C_{17}H_{13}N_3O_3$ , are almost coplanar, a conformation stabilized by intramolecular  $N-H\cdots O$  and  $C-H\cdots O$  interactions. A supramolecular chain mediated by  $C-H\cdots O$  interactions is found in the crystal structure and these pack side-by-side into layers. The layers are consolidated into the crystal structure by further  $C-H\cdots O$  and  $C-H\cdots N$  interactions.

#### **Related literature**

For related literature, see: Sawicki (1957); Basu Baul, Mizar, Lyčka *et al.* (2006); Basu Baul, Mizar, Song *et al.* (2006). For a related structure, see: Basu Baul *et al.* (2005).



#### **Experimental**

Crystal data  $C_{17}H_{13}N_3O_3$  $M_r = 307.30$ 

Monoclinic, C2/ca = 26.695 (3) Å

‡ Additional correspondence e-mail: basubaul@nehu.ac.in.

| b = 8.2513 (9) Å                |  |
|---------------------------------|--|
| c = 13.5873 (16)  Å             |  |
| $\beta = 116.589 \ (5)^{\circ}$ |  |
| V = 2676.3 (5) Å <sup>3</sup>   |  |
| Z = 8                           |  |

#### Data collection

| Rigaku AFC12K/SATURN724            | 4109 measured reflections              |
|------------------------------------|----------------------------------------|
| diffractometer                     | 2329 independent reflections           |
| Absorption correction: multi-scan  | 2165 reflections with $I > 2\sigma(I)$ |
| (ABSCOR; Higashi, 1995)            | $R_{\rm int} = 0.024$                  |
| $T_{\min} = 0.798, \ T_{\max} = 1$ |                                        |
| (expected range = 0.794-0.995)     |                                        |

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.062 & 209 \text{ parameters} \\ wR(F^2) &= 0.132 & H\text{-atom parameters constrained} \\ S &= 1.36 & \Delta\rho_{\text{max}} &= 0.24 \text{ e } \text{\AA}^{-3} \\ 2329 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.23 \text{ e } \text{\AA}^{-3} \end{split}$$

Mo  $K\alpha$  radiation  $\mu = 0.11 \text{ mm}^{-1}$ 

 $0.35 \times 0.13 \times 0.05$  mm

T = 98 (2) K

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                   | D-H                       | $H \cdots A$                      | $D \cdots A$                             | $D - \mathbf{H} \cdots A$              |
|----------------------------------------------------|---------------------------|-----------------------------------|------------------------------------------|----------------------------------------|
| N3−H3N···O2                                        | 0.88                      | 1.96                              | 2.633 (3)                                | 132                                    |
| C12−H12···O3                                       | 0.95                      | 2.32                              | 2.662 (3)                                | 101                                    |
| C8−H8···O1 <sup>i</sup>                            | 0.95                      | 2.51                              | 3.425 (3)                                | 161                                    |
| $C17 - H17B \cdots O1^{ii}$                        | 0.98                      | 2.49                              | 3.227 (4)                                | 132                                    |
| $C17 - H17C \cdot \cdot \cdot N1^{iii}$            | 0.98                      | 2.59                              | 3.379 (3)                                | 138                                    |
| Symmetry codes:<br>$-x + 1, y, -z + \frac{1}{2}$ . | (i) $-x + \frac{1}{2}, y$ | $-\frac{1}{2}, -z - \frac{1}{2};$ | (ii) $x + \frac{1}{2}, -y + \frac{1}{2}$ | $+\frac{5}{2}, z + \frac{1}{2};$ (iii) |

Data collection: *CrystalClear* (Rigaku Americas Corporation, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

The financial support of the Department of Science and Technology, New Delhi, India (grant No. S*R*/S1/IC-03/2005), is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2564).

#### References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Basu Baul, T. S., Mizar, A., Lyčka, A., Rivarola, E., Jirásko, R., Holčapek, M., de Vos, D. & Englert, U. (2006). J. Organomet. Chem. 691, 3416–3425.

Basu Baul, T. S., Mizar, A., Song, X., Eng, G., Willem, R., Biesemans, M., Verbruggen, I. & Butcher, R. J. (2006). J. Organomet. Chem. 691, 2605–2613.

Basu Baul, T. S., Singh, K. S., Lyčka, A., Holčapek, M. & Linden, A. (2005). J. Organomet. Chem. 690, 1581–1587.

Brandenburg, K. (2006). *DIAMOND*. Release 3.1. Crystal Impact GbR, Bonn, Germany.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku Americas Corporation (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sawicki, E. (1957). J. Org. Chem. 22, 743-745.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, 04256 [doi:10.1107/S1600536807047848]

#### Methyl 2-{[(E)-8-oxo-5,8-dihydroquinolin-5-ylidene]hydrazino}benzoate

#### T. S. Basu Baul, A. Mizar and E. R. T. Tiekink

#### Comment

The title compound,  $C_{17}H_{13}O_3N_3$  (I) was prepared during an on-going study of the coordination chemistry of organotin(IV) 5-[(*E*)-2-((aryl)-1-diazenyl)quinolin-8-olates] (Basu Baul, Mizar, Lyčka *et al.* (2006); Basu Baul, Mizar, Song *et al.* (2006).

The crystal structure shows (I), (Fig. 1), to exist as the phenylhydrazone tautomer rather than in the azo form (Sawicki, 1957). The non-H atoms in (I) are effectivlely co-planar and the dihedral angle between the N1/C1—C9 and C10—C15 ring planes is  $1.33 (10)^{\circ}$ . An intramolecular N3—H···O2 hydrogen bond contributes to the stability of the observed conformation; an intramolecular C12—H···O3 interaction is also noted. Intermolecular C8—H···O1 interactions lead to the formation of supramolecular chains aligned along the *b* axis (Fig. 2 & Table 1). These stack side-by-side to form layers and interactions between these layers are of the type C—H···O and C—H···N and involve the methyl groups (Fig. 3).

A very closely related molecule characterized in the tautomeric form shown in the Scheme has been observed previously in a dimeric dibenzyltin structure (Basu Baul *et al.*, 2005).

#### Experimental

Methyl anthranilate (5.0 g, 33.1 mmol) was mixed with HCl (11 ml) and water (11 ml) and digested in a water bath for 1 h. The hydrochloride was cooled to 278 K and diazotized with ice-cold aqueous NaNO<sub>2</sub> solution (5.0 g, 72.45 mmol, 25 ml). A cold solution of quinolin-8-ol (5.0 g, 34.4 mmol), previously dissolved in methanol solution (70 ml), was then added to the cold diazonium salt solution with vigorous stirring maintaining the temperature around 273 K. A light-orange colour developed and the stirring was continued for 1 h. A saturated solution of potassium acetate was then added to neutralize the hydrochloric acid, thereupon a deep-red precipitate appeared and stirring was continued for an additional hour. The reaction mixture was kept overnight in a refrigerator followed by 2 h at room temperature. The precipitate was filtered, washed several times with water to remove soluble starting materials, and then dried in air. The crude product was washed with hexane to remove any tarry materials, dried *in vacuo* and recrystallization from a methanol solution afforded orange microcrystalline (I) in 53.6% (5.67 g) yield. Red crystals (m.p. 434–435 K) of (I) suitable for an X-ray crystal structure determination were obtained from the slow evaporation of an ethylacetate/methanol (v/v, 1:1) solution. Elemental analysis, found: C 66.40, H 4.23, N 13.56%; C<sub>17</sub>H<sub>13</sub>O<sub>3</sub>N<sub>3</sub> requires C 66.44, H 4.26, N 13.67%.

#### Refinement

All H atoms were included in the riding-model approximation, with N—H = 0.88 Å and C—H = 0.95 to 0.98 Å, and with  $U_{iso}(H) = 1.2U_{eq}(C, N)$  or  $1.5U_{eq}(methyl-C)$ .

#### Figures



Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).



Fig. 2. View of the supramolecular chain in (I) mediated by hydrogen bonds, shown as orange-dashed lines. Colour code: red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).



Fig. 3. Unit cell packing diagram in (I) highlighting the stacking of layers. Hydrogen bonds are shown as orange-dashed lines. Colour code in Fig. 2.

#### Methyl 2-{[(E)-8-oxo-5,8-dihydroquinolin-5-ylidene]hydrazino}benzoate

| Crystal data                                                  |                                                 |
|---------------------------------------------------------------|-------------------------------------------------|
| C <sub>17</sub> H <sub>13</sub> N <sub>3</sub> O <sub>3</sub> | $F_{000} = 1280$                                |
| $M_r = 307.30$                                                | $D_{\rm x} = 1.525 {\rm ~Mg~m}^{-3}$            |
| Monoclinic, C2/c                                              | Mo $K\alpha$ radiation<br>$\lambda = 0.71069$ Å |
| Hall symbol: -C 2yc                                           | Cell parameters from 7939 reflections           |
| a = 26.695 (3)  Å                                             | $\theta = 2.6 - 29.6^{\circ}$                   |
| <i>b</i> = 8.2513 (9) Å                                       | $\mu = 0.11 \text{ mm}^{-1}$                    |
| <i>c</i> = 13.5873 (16) Å                                     | T = 98 (2)  K                                   |
| $\beta = 116.589 \ (5)^{\circ}$                               | Prism, red                                      |
| $V = 2676.3 (5) \text{ Å}^3$                                  | $0.35\times0.13\times0.05~mm$                   |
| Z = 8                                                         |                                                 |
|                                                               |                                                 |

#### Data collection

| Rigaku AFC12K/SATURN724<br>diffractometer                    | 2329 independent reflections           |
|--------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                     | 2165 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                      | $R_{\rm int} = 0.024$                  |
| T = 98(2)  K                                                 | $\theta_{\text{max}} = 25.0^{\circ}$   |
| ω scans                                                      | $\theta_{\min} = 2.6^{\circ}$          |
| Absorption correction: multi-scan<br>(ABSCOR; Higashi, 1995) | $h = 0 \rightarrow 31$                 |

| $T_{\min} = 0.798, T_{\max} = 1$ | $k = -9 \rightarrow 9$   |
|----------------------------------|--------------------------|
| 4109 measured reflections        | $l = -16 \rightarrow 14$ |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.062$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.132$                                      | $w = 1/[\sigma^2(F_0^2) + (0.0357P)^2 + 4.7653P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.36                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 2329 reflections                                       | $\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$                                 |
| 209 parameters                                         | $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$                          |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

methods

#### Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У          | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|------------|---------------|---------------------------|
| 01  | 0.34053 (7)  | 1.3572 (2) | -0.08723 (14) | 0.0274 (4)                |
| O2  | 0.61943 (7)  | 1.0578 (2) | 0.29517 (13)  | 0.0204 (4)                |
| O3  | 0.69937 (6)  | 0.9308 (2) | 0.39955 (13)  | 0.0206 (4)                |
| N1  | 0.30057 (8)  | 1.0510 (3) | -0.15349 (16) | 0.0214 (5)                |
| N2  | 0.48060 (8)  | 0.8551 (3) | 0.09386 (16)  | 0.0196 (5)                |
| N3  | 0.53313 (8)  | 0.8769 (3) | 0.16930 (16)  | 0.0215 (5)                |
| H3N | 0.5460       | 0.9756     | 0.1903        | 0.026*                    |
| C1  | 0.37145 (10) | 1.2430 (3) | -0.04737 (19) | 0.0203 (5)                |
| C2  | 0.42878 (10) | 1.2680 (3) | 0.0373 (2)    | 0.0252 (6)                |
| H2  | 0.4414       | 1.3755     | 0.0604        | 0.030*                    |
| C3  | 0.46412 (10) | 1.1451 (3) | 0.0834 (2)    | 0.0254 (6)                |
| H3  | 0.5011       | 1.1680     | 0.1378        | 0.030*                    |
| C4  | 0.44828 (9)  | 0.9807 (3) | 0.05351 (19)  | 0.0189 (5)                |
| C5  | 0.39130 (10) | 0.9464 (3) | -0.02835 (18) | 0.0187 (5)                |
| C6  | 0.37130 (10) | 0.7905 (3) | -0.05822 (19) | 0.0214 (5)                |
| Н6  | 0.3953       | 0.7003     | -0.0262       | 0.026*                    |

# supplementary materials

| C7   | 0.31712 (10) | 0.7666 (3) | -0.13366 (19) | 0.0232 (6) |
|------|--------------|------------|---------------|------------|
| H7   | 0.3028       | 0.6601     | -0.1546       | 0.028*     |
| C8   | 0.28330 (10) | 0.9001 (3) | -0.17926 (19) | 0.0232 (6) |
| H8   | 0.2456       | 0.8822     | -0.2320       | 0.028*     |
| C9   | 0.35390 (10) | 1.0730 (3) | -0.07851 (19) | 0.0198 (5) |
| C10  | 0.56749 (10) | 0.7457 (3) | 0.21470 (19)  | 0.0203 (5) |
| C11  | 0.62287 (10) | 0.7696 (3) | 0.29446 (19)  | 0.0191 (5) |
| C12  | 0.65655 (10) | 0.6352 (3) | 0.3393 (2)    | 0.0220 (6) |
| H12  | 0.6940       | 0.6503     | 0.3941        | 0.026*     |
| C13  | 0.63740 (11) | 0.4825 (3) | 0.3067 (2)    | 0.0273 (6) |
| H13  | 0.6611       | 0.3919     | 0.3387        | 0.033*     |
| C14  | 0.58308 (11) | 0.4604 (3) | 0.2267 (2)    | 0.0317 (6) |
| H14  | 0.5697       | 0.3539     | 0.2025        | 0.038*     |
| C15  | 0.54847 (10) | 0.5896 (3) | 0.1819 (2)    | 0.0277 (6) |
| H15  | 0.5110       | 0.5723     | 0.1279        | 0.033*     |
| C16  | 0.64564 (10) | 0.9334 (3) | 0.32801 (19)  | 0.0180 (5) |
| C17  | 0.72608 (10) | 1.0850 (3) | 0.4336 (2)    | 0.0230 (5) |
| H17A | 0.7156       | 1.1550     | 0.3691        | 0.034*     |
| H17B | 0.7668       | 1.0704     | 0.4703        | 0.034*     |
| H17C | 0.7141       | 1.1354     | 0.4849        | 0.034*     |
|      |              |            |               |            |

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0231 (9)  | 0.0265 (10) | 0.0283 (10) | 0.0061 (8)   | 0.0075 (8)  | 0.0022 (8)   |
| O2  | 0.0177 (8)  | 0.0177 (9)  | 0.0228 (9)  | 0.0024 (7)   | 0.0066 (7)  | 0.0004 (7)   |
| O3  | 0.0147 (8)  | 0.0211 (9)  | 0.0202 (8)  | -0.0003 (7)  | 0.0026 (7)  | -0.0005 (7)  |
| N1  | 0.0138 (10) | 0.0327 (12) | 0.0159 (10) | 0.0013 (9)   | 0.0050 (8)  | -0.0004 (9)  |
| N2  | 0.0147 (10) | 0.0246 (11) | 0.0180 (10) | -0.0007 (9)  | 0.0062 (8)  | -0.0007 (9)  |
| N3  | 0.0143 (10) | 0.0199 (11) | 0.0247 (11) | -0.0008 (8)  | 0.0038 (8)  | 0.0003 (9)   |
| C1  | 0.0169 (12) | 0.0255 (13) | 0.0197 (12) | 0.0033 (11)  | 0.0093 (10) | 0.0021 (10)  |
| C2  | 0.0222 (13) | 0.0220 (13) | 0.0293 (14) | -0.0037 (11) | 0.0094 (11) | -0.0024 (11) |
| C3  | 0.0173 (12) | 0.0280 (14) | 0.0235 (13) | -0.0019 (11) | 0.0025 (10) | -0.0007 (11) |
| C4  | 0.0166 (12) | 0.0208 (13) | 0.0187 (12) | 0.0011 (10)  | 0.0074 (10) | 0.0024 (10)  |
| C5  | 0.0178 (12) | 0.0271 (14) | 0.0136 (11) | -0.0016 (10) | 0.0091 (10) | -0.0011 (10) |
| C6  | 0.0214 (13) | 0.0238 (13) | 0.0185 (12) | 0.0003 (10)  | 0.0084 (10) | 0.0005 (10)  |
| C7  | 0.0240 (13) | 0.0245 (13) | 0.0193 (12) | -0.0062 (11) | 0.0081 (10) | -0.0032 (10) |
| C8  | 0.0174 (12) | 0.0335 (15) | 0.0176 (12) | -0.0044 (11) | 0.0069 (10) | -0.0035 (11) |
| C9  | 0.0149 (11) | 0.0289 (14) | 0.0155 (11) | 0.0004 (10)  | 0.0067 (10) | -0.0009 (10) |
| C10 | 0.0173 (12) | 0.0225 (13) | 0.0207 (12) | 0.0001 (10)  | 0.0081 (10) | 0.0028 (10)  |
| C11 | 0.0170 (12) | 0.0215 (13) | 0.0189 (11) | 0.0003 (10)  | 0.0082 (10) | 0.0006 (10)  |
| C12 | 0.0190 (12) | 0.0235 (14) | 0.0212 (12) | 0.0023 (10)  | 0.0069 (10) | 0.0024 (10)  |
| C13 | 0.0250 (14) | 0.0199 (13) | 0.0321 (14) | 0.0040 (11)  | 0.0085 (12) | 0.0050 (11)  |
| C14 | 0.0273 (14) | 0.0191 (13) | 0.0420 (16) | -0.0034 (11) | 0.0094 (12) | 0.0007 (12)  |
| C15 | 0.0184 (12) | 0.0257 (14) | 0.0326 (14) | -0.0021 (11) | 0.0056 (11) | 0.0003 (12)  |
| C16 | 0.0176 (12) | 0.0215 (13) | 0.0154 (11) | 0.0012 (10)  | 0.0079 (9)  | 0.0011 (10)  |
| C17 | 0.0191 (12) | 0.0214 (13) | 0.0244 (13) | -0.0048 (10) | 0.0061 (10) | -0.0018 (11) |

Geometric parameters (Å, °)

| 01 C1                   | 1 200 (2)            | C6 C7                      | 1 262 (2)         |
|-------------------------|----------------------|----------------------------|-------------------|
|                         | 1.209 (3)            |                            | 1.362 (3)         |
| 02                      | 1.210 (3)            | С6—Н6                      | 0.9500            |
| 03                      | 1.325 (3)            | C7—C8                      | 1.382 (4)         |
| O3—C17                  | 1.431 (3)            | С7—Н7                      | 0.9500            |
| N1—C8                   | 1.320 (3)            | С8—Н8                      | 0.9500            |
| N1—C9                   | 1.341 (3)            | C10—C15                    | 1.383 (4)         |
| N2—N3                   | 1.327 (3)            | C10—C11                    | 1.402 (3)         |
| N2—C4                   | 1.302 (3)            | C11—C12                    | 1.385 (3)         |
| N3—C10                  | 1.373 (3)            | C11—C16                    | 1.468 (3)         |
| N3—H3N                  | 0.8800               | C12—C13                    | 1.357 (4)         |
| C1—C2                   | 1.460 (3)            | C12—H12                    | 0.9500            |
| C1—C9                   | 1.479 (4)            | C13—C14                    | 1.381 (4)         |
| C2—C3                   | 1.335 (4)            | С13—Н13                    | 0.9500            |
| С2—Н2                   | 0.9500               | C14—C15                    | 1.363 (4)         |
| C3—C4                   | 1.424 (4)            | C14—H14                    | 0.9500            |
| С3—Н3                   | 0.9500               | C15—H15                    | 0.9500            |
| C4—C5                   | 1.455 (3)            | С17—Н17А                   | 0.9800            |
| C5—C6                   | 1.383 (4)            | С17—Н17В                   | 0.9800            |
| С5—С9                   | 1.394 (3)            | С17—Н17С                   | 0.9800            |
| C16—O3—C17              | 116.24 (19)          | N1—C9—C5                   | 123.7 (2)         |
| C8—N1—C9                | 117.1 (2)            | N1—C9—C1                   | 116.0 (2)         |
| C4—N2—N3                | 119.3 (2)            | C5—C9—C1                   | 120.3 (2)         |
| N2—N3—C10               | 120.2 (2)            | N3—C10—C15                 | 120.9 (2)         |
| N2—N3—H3N               | 119.9                | N3—C10—C11                 | 119.8 (2)         |
| C10—N3—H3N              | 119.9                | C15—C10—C11                | 119.2 (2)         |
| O1—C1—C2                | 120.5 (2)            | C12—C11—C10                | 118.7 (2)         |
| O1—C1—C9                | 123.1 (2)            | C12—C11—C16                | 120.2 (2)         |
| C2—C1—C9                | 116.4 (2)            | C10—C11—C16                | 121.1 (2)         |
| C3—C2—C1                | 122.2 (2)            | C13—C12—C11                | 121.6 (2)         |
| C3—C2—H2                | 118.9                | C13—C12—H12                | 119.2             |
| С1—С2—Н2                | 118.9                | C11—C12—H12                | 119.2             |
| $C^2 - C^3 - C^4$       | 122 2 (2)            | C12 - C13 - C14            | 119.3 (2)         |
| С2—С3—Н3                | 118.9                | C12 - C13 - H13            | 120.4             |
| C4—C3—H3                | 118.9                | C12 - C13 - H13            | 120.1             |
| $N_2 - C_4 - C_3$       | 125.6 (2)            | $C_{15}$ $C_{14}$ $C_{13}$ | 120.1<br>120.7(2) |
| N2 - C4 - C5            | 115.8 (2)            | C15 - C14 - H14            | 110.6             |
| $C_2 = C_4 = C_5$       | 113.6(2)             | $C_{13} = C_{14} = H_{14}$ | 110.6             |
| $C_{5} = C_{4} = C_{5}$ | 110.0(2)             | $C_{13} = C_{14} = 1114$   | 119.0<br>120.5(2) |
| $C_{0} = C_{3} = C_{3}$ | 117.1(2)<br>122.7(2) | $C_{14} = C_{15} = C_{10}$ | 120.3 (2)         |
| $C_0 = C_2 = C_4$       | 122.7(2)             | C14—C15—H15                | 119.0             |
| $C_{9} = C_{3} = C_{4}$ | 120.2(2)             | C10-C13-H13                | 119.8             |
| $C_{1} = C_{0} = C_{3}$ | 119.7 (2)            | 02 - 016 - 03              | 122.8(2)          |
|                         | 120.1                | 02 - 016 - 011             | 125.2 (2)         |
|                         | 120.1                | 03-015-011                 | 112.0 (2)         |
|                         | 118.9 (2)            |                            | 109.5             |
| С6—С7—Н7                | 120.6                | O3—C17—H17B                | 109.5             |
| С8—С7—Н7                | 120.6                | H17A—C17—H17B              | 109.5             |

# supplementary materials

| N1—C8—C7     | 123.5 (2)    | O3—C17—H17C     | 109.5       |
|--------------|--------------|-----------------|-------------|
| N1—C8—H8     | 118.2        | H17A—C17—H17C   | 109.5       |
| С7—С8—Н8     | 118.2        | H17B—C17—H17C   | 109.5       |
| C4—N2—N3—C10 | 178.5 (2)    | O1-C1-C9-N1     | -1.1 (3)    |
| O1—C1—C2—C3  | 179.9 (2)    | C2-C1-C9-N1     | 177.7 (2)   |
| C9—C1—C2—C3  | 1.1 (4)      | O1—C1—C9—C5     | -179.1 (2)  |
| C1—C2—C3—C4  | -0.3 (4)     | C2—C1—C9—C5     | -0.3 (3)    |
| N3—N2—C4—C3  | -0.1 (4)     | N2—N3—C10—C15   | 0.9 (4)     |
| N3—N2—C4—C5  | -179.75 (19) | N2-N3-C10-C11   | -179.9 (2)  |
| C2—C3—C4—N2  | 179.2 (2)    | N3-C10-C11-C12  | 179.7 (2)   |
| C2—C3—C4—C5  | -1.2 (4)     | C15-C10-C11-C12 | -1.0 (4)    |
| N2-C4-C5-C6  | 3.1 (3)      | N3-C10-C11-C16  | -2.1 (3)    |
| C3—C4—C5—C6  | -176.5 (2)   | C15-C10-C11-C16 | 177.1 (2)   |
| N2-C4-C5-C9  | -178.3 (2)   | C10-C11-C12-C13 | 0.9 (4)     |
| C3—C4—C5—C9  | 2.0 (3)      | C16-C11-C12-C13 | -177.3 (2)  |
| C9—C5—C6—C7  | 0.0 (3)      | C11—C12—C13—C14 | 0.3 (4)     |
| C4—C5—C6—C7  | 178.5 (2)    | C12-C13-C14-C15 | -1.3 (4)    |
| C5—C6—C7—C8  | 0.3 (4)      | C13-C14-C15-C10 | 1.1 (4)     |
| C9—N1—C8—C7  | -0.3 (4)     | N3-C10-C15-C14  | 179.3 (3)   |
| C6—C7—C8—N1  | -0.2 (4)     | C11-C10-C15-C14 | 0.1 (4)     |
| C8—N1—C9—C5  | 0.6 (3)      | C17—O3—C16—O2   | -2.4 (3)    |
| C8—N1—C9—C1  | -177.3 (2)   | C17—O3—C16—C11  | 177.35 (19) |
| C6—C5—C9—N1  | -0.5 (3)     | C12—C11—C16—O2  | -178.7 (2)  |
| C4—C5—C9—N1  | -179.1 (2)   | C10-C11-C16-O2  | 3.2 (4)     |
| C6—C5—C9—C1  | 177.4 (2)    | C12—C11—C16—O3  | 1.6 (3)     |
| C4—C5—C9—C1  | -1.2 (3)     | C10-C11-C16-O3  | -176.5 (2)  |
|              |              |                 |             |

### Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-----------------------------|-------------|--------------|--------------|------------|
| N3—H3N…O2                   | 0.88        | 1.96         | 2.633 (3)    | 132        |
| C12—H12···O3                | 0.95        | 2.32         | 2.662 (3)    | 101        |
| C8—H8···O1 <sup>i</sup>     | 0.95        | 2.51         | 3.425 (3)    | 161        |
| C17—H17B···O1 <sup>ii</sup> | 0.98        | 2.49         | 3.227 (4)    | 132        |
| C17—H17C…N1 <sup>iii</sup>  | 0.98        | 2.59         | 3.379 (3)    | 138        |
|                             | (1)         |              | 1 /2         |            |

Symmetry codes: (i) -x+1/2, y-1/2, -z-1/2; (ii) x+1/2, -y+5/2, z+1/2; (iii) -x+1, y, -z+1/2.









